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FINITE VOLUME SOLUTIONS 
OF CONVECTION-DIFFUSION TEST PROBLEMS 

J. A. MACKENZIE AND K. W. MORTON 

ABSTRACT. The cell-vertex formulation of the finite volume method has been 
developed and widely used to model inviscid flows in aerodynamics: more re- 
cently, one of us has proposed an extension for viscous flows. The purpose of 
the present paper is two-fold: first we have applied this scheme to a well-known 
convection-diffusion model problem, involving flow round a 1800 bend, which 
highlights some of the issues concerning the application of the boundary con- 
ditions in such cell-based schemes. The results are remarkably good when the 
boundary conditions are applied in an appropriate manner. In our efforts to 
explain the high quality of the results we were led to a detailed analysis of the 
corresponding one-dimensional problem. Our second purpose is thus to gather 
together various approaches to the analysis of this problem and to draw atten- 
tion to the supra-convergence phenomena enjoyed by the proposed methods. 

1. INTRODUCTION 

Since their independent introduction by McDonald [14] and MacCormack 
and Paullay [11] for the discretization of the transonic Euler equations, finite 
volume methods have taken a leading role in computational fluid dynamics. The 
more recent popularization of these methods by Jameson et al. [7], Ni [21] and 
others has now established them as the dominant discretization schemes in the 
computation of aeronautical fluid flows. Over the years there have been many 
variants of the finite volume method, but two main types of formulation have 
emerged. In the cell-center approach, associated with the name of Jameson, 
although he has used both successfully, values of the unknowns are held at 
the centers of the cells over which conservation is imposed. In the cell-vertex 
scheme they are held at the vertices of these same cells. This presupposes that 
we are using quadrilateral cells in two dimensions, or hexahedral cells in three 
dimensions. 

Morton and Paisley [18] have given good reasons, stemming mainly from the 
greater compactness of the stencil, why the cell-vertex formulation should be 
preferred for modeling inviscid flows. On the other hand, for viscous flows, 
modelled by the Navier-Stokes equations, one might expect the advantage to 
lie with the cell-center methods. However, we shall show that our cell-vertex 
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scheme has some attractive properties in this case too. This paper has arisen 
from an investigation of the performance of the scheme for two well-known 
convection-diffusion test problems, proposed at an IAHR workshop, the results 
of which are summarized by Smith and Hutton [23]. 

2. THE CELL-VERTEX METHOD 

We begin by describing the cell-vertex method for the steady convection- 
diffusion problem 

(2.1a) V - (cVu - au) = f in Q, 
(2.1b) u=g onFD, 

and 

(2.1c) au/ln = O onJFN, 

where e is a positive diffusion coefficient and a = (a, b)T is the convective 
velocity field. The domain Q is an open bounded region of JR2 with boundary 
FD U FN. We assume that the domain is partitioned by a structured mesh 
of quadrilaterals and suppose, for simplicity, that its vertices can be labelled 
{(i,j)i=O,1, ..., M;jj=O,1, ..., N}. 

Noting that the left-hand side of problem (2.1 a) can be considered as the 
divergence of a vector flux function W = (F, G) with F = gu, - au and 
G = guy - bu, we can obtain an algebraic equation for each interior cell by 
integrating (2.1 a) over the cell, using the divergence theorem to convert this 
into line integrals of normal fluxes along the cell edges, and approximating 
these using the trapezoidal rule: for cell C of Figure 1 (a), 

jdiv(F, G) dxdY=j Fdy - Gdx 
c a~~~~c 

(2.2) I 2 [(FI - F3)(y2 - Y4) + (F2 - F4)(y3 - YI) 

- (GI - G3)(x2 - x4) - (G2 - G4)(x3 - X13 

With the approximation U(x, y) parametrized by its values Ui, j at the 
vertices, this still leaves Vu to be approximated at the same points. There 
are several ways in which this may be done, but we consider mainly that called 
Method A in Mackenzie [ 12]. That is, each component of Vu is also considered 
as a divergence, and its value at the vertex is obtained as an average over the 
subsidiary quadrilateral centered at that point and obtained by integrating along 
the diagonals as in Figure 1 (b). Thus we have 

(2.3) a U() := 1 [(UE - UW)(YN - YS) + (UN - US)(YW - YE)], ax . ' | 2V[ 

(2.4) 2V1 ~[(UE -UW)(XN -XS) ?(UN -US)(XW -XE)]. 
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On a rectangular uniform grid, approximations (2.3) and (2.4) coincide with the 
standard second-order central difference formulae. To complete the approxima- 
tion over cell C, the right-hand side of (2. la) is assumed to be integrated exactly. 

It remains to consider how boundary conditions are to be imposed and the 
set of cell residual equations assembled so as to yield a nonsingular system. 
We suppose that for the differential system u is prescribed at some points, 
including all those corresponding to inflow, and otherwise the homogeneous 
Neumann condition au/ln = 0 is to be imposed. For the discrete system 
we shall assume that P boundary vertices have their values prescribed and 
that P > M + N + 1, that is, that at least half are prescribed. Then the 
total number of unknowns is (M + 1)(N + 1) - P < MN, so that there are 
sufficient cell equations that may be used to determine them: to obtain an exact 
match, various algorithms may be used. We prefer one based on upwinded 
control volumes used in the Moores' method [ 1 5], but derived through a Petrov- 
Galerkin formulation. The derivation starts from the Galerkin equations, which 
associate each nodal unknown with its test function, which is identical to a 
piecewise linear trial function. Then, this is replaced by a piecewise constant 
test function over a quadrilateral-as in a cell-centered finite volume method. 
Finally, this is shifted upwind to coincide with one of the four cells meeting 
at the node. The upwinding is based on the convective velocity at the node 
and results in each nodal unknown being associated with just one cell residual. 
We shall confine our consideration here to cases where, in turn, each interior 
cell residual is associated in this way with just one unknown: there may be 
some boundary cells, where Dirichlet conditions are imposed and the flow is 
directed outwards, which are not associated with unknowns and their residuals 
will not be used. A form of the allocation algorithm which will deal with all 
flow situations is given in Morton [17]. 

For the boundary edges, the normal flux is approximated as follows: first 
the derivative along each edge can be approximated by the divided difference 
in that direction, (Up - UQ)/lrp - rQl in Figure 2; then the derivative along 
the adjoining edge at each boundary vertex is extrapolated from the divided 

N 

/ ~~~E c 1 ~ ~~/ 1 / 
4~~~~~~~~~~~~~ 

1 w~~~~~~ 

(a) (b) 

FIGURE 1. Geometric configuration of flow variables: (a) the 
conservation cell C; (b) the subblock used for a derivative at 1 
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difference along that edge and the derivative at the other vertex of the edge-that 
is, in Figure 2, we have 

(2.5) U(QR) = 2(UR- UQ)/lrR- rQl - U(Q ). 

Finally, these two types of data can be combined to approximate the normal 
fluxes across each of the boundary edges such as PQ. Clearly U(QR), U(PS) and 
the edge differences can be combined for this purpose whether or not P or Q is 
a corner point. 

The layout of the rest of the paper is as follows: in the next section we 
present results obtained for a pair of well-known two-dimensional test prob- 
lems at a wide range of mesh Peclet numbers. Then, in ?4, as a first step in 
attempting to explain these remarkably good results, we analyze a corresponding 
one-dimensional problem in a number of different ways: we look at monotonic- 
ity of solutions, the existence of a maximum principle, an energy identity, and 
estimation of a discrete Green's function. Finally, in ?5 we present numerical 
evidence to support the analysis of the one-dimensional case. 

3. RESULTS FOR THE IAHR/CEGB TEST PROBLEMS 

The two-dimensional cell-vertex method method has been tested on two 
steady convection-diffusion problems which were devised by workers at the 
CEGB for an IAHR workshop in 1981. The first problem involves the con- 
vection of a steep inlet temperature profile around a 1800 bend. The second, 
and more difficult, problem involves the calculation of a developing boundary 
layer. Computational methods for the first problem are reviewed and discussed 
in Smith and Hutton [23]. For the second problem, a comparison of some finite 
element solutions can be found in Morton and Scotney [19]. 

The domain for both problems is a rectangular region 

Q = {(x, y) : - 1 < x < 1, 0 < y < 1}, 

and the convective velocity field is given analytically by 

a(x, y) = (2y(l - x2), - 2x(1 _ y2))T 

3.1. Problem 1. The inlet boundary condition along -1 < x < 0, y = 0 is 
given by 

(3.1) U(x, 0) = 1 + tanh[a(2x + 1)], 

and as in Morton and Scotney [19] we consider only the case a = 10. This 
profile decreases monotonically from U(0, 0) 2 down to U(- 1, 0) 0 with 

R R 

S S2 

FIGURE 2. Boundary cells 
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FIGURE 3. Streamlines for the IAHR/CEGB problems: hashing 
indicates unused cell residuals at outflow Dirichlet boundaries 

a very steep interior layer centered at (-1/2, 0). The boundary condition on 
the tangential boundaries, x = -1, y = 1 and x = 1 is given by the compatible 
Dirichlet condition U = 1 - tanh(a). Finally, a homogeneous Neumann or 
natural boundary condition is imposed at the outlet 0 < x < 1, y = 0. For 
comparison with Smith and Hutton [23], the calculations are performed on a 
uniform grid Ax = Ay = 0.1 . The main test of this problem is the calculation 
of the outflow profile for a wide range of values of e. Here, we have considered 
e = 1 x 10-6, 2 x 10-3, 1 x 10-2, and 1 x 10-1 and with maxfal = 2 this 
gives a range of cell Peclet numbers from 2 to 2 x 105 . To effectively cover 
all cases on such a coarse grid is a very severe test for any method: the high 
curvature of the velocity field near the origin can easily introduce errors due to 
crosswind diffusion. 

For the problem on a M x N grid there are potentially (M + 1) x (N + 1) 
unknowns. Here we have P = 2(N + 1) + M - 1 + M/2 Dirichlet bound- 
ary conditions, and since P > M + N + 1, we therefore have sufficient cell 
equations to determine the unknowns. To obtain an exact match between the 
unknowns and cell equations, we follow the procedure given in ?2. Labelling 
the (i, j)th cell equation from the bottom left, this results in each equation 
being associated with just one unknown except for the M/2 cell equations 
(i = 1, ..., M/2; j = N) andthe N cellequations (i = M; j = 1, ..., N) 
which are disregarded-see Figure 3; to resolve the ambiguity in the association 
of the nine nodal unknowns on x = 0 one has to appeal to the curvature of the 
streamlines. To approximate the normal fluxes along the boundary edges, a sim- 
plification of the extrapolation procedure described in ?2 can be used because 
of the uniform rectangular mesh. 

For comparison, an accurate solution was calculated using a finite difference 
method on a fine grid where Ax = Ay = 0.02 and the computed output profiles, 
restricted onto the coarse grid, are shown in Figure 4(a). The results using 
the cell-vertex method on the standard grid are given in Figure 4(b) and are 
remarkably good. For the two largest cell Peclet number cases the solutions are 
sharp and have little or no undershoots or overshoots and are as accurate as 
one could expect on such a coarse grid. The capability of the cell-vertex finite 
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FIGURE 4. Outlet profiles for first IAHR/CEGB test problem: 
(a) shows the finite difference fine grid solution restricted to the 
coarse grid; (b) is the cell-vertex finite volume solution on the 
standard grid 

volume method to cope with viscous dominated problems is demonstrated by 
the solutions of the remaining two cases, which are at least as accurate as the 
solutions obtained from other methods. Note that no upwinding parameters, 
depending on the cell Peclet number, are used in this method-in contrast to 
the many well-known exponential-fitting methods, Petrov-Galerkin schemes, or 
upwind difference schemes. 
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FIGURE 5. (a) shows the finite volume boundary layer solutions 
for different values of c for the second IAHR/CEGB problem; 
(b) compares the fine and coarse grid solutions at y = 0.0 and 
y = 0.5 with c = 2 x O-3 
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3.2. Problem 2. The second test case considered is a modification of the first 
problem where the inlet profile is now given by U(x, 0) = 0 and on the right- 
hand tangential boundary, x = 1, the Dirichlet condition U(1, y) = 100, 
0 < y < 1, is imposed. The compatible Dirichlet condition U = 0 is also 
set on the remaining two boundaries x = -1 and y = 1 . The main difficulty 
of this problem lies in the calculation of a developing boundary layer from 
the corner point x = 1, y = 1 to the outflow y = 0. Figure 5(a) (see p. 
195) shows the computed solutions using the finite volume method at the three 
stations y = 0.9, y = 0.5 and y = 0, for the four values of e which were 
considered in the first problem. 

The results for the two lower values of the cell Peclet number agree well with 
streamline-diffusion [6], upwinded [5] and the mixed finite element solutions 
found in Morton and Scotney [19]. In fact, the finite volume solutions bear a 
remarkable resemblance to those obtained by the mixed finite element method 
proposed by Morton and Scotney. For the higher cell Peclet number cases the 
story is quite different. For instance, when e = 2 x 10-3 the thickness of 
the boundary layer only extends to two cell widths of the standard mesh. On 
such a coarse grid the finite volume method has performed extremely well and 
has successfully modelled the thickening of the boundary layer. More detailed 
pictures of the solution at y = 0.0 and y = 0.5 are given in Figure 5(b) 
where the standard grid solutions are compared with a solution on a 40 x 20 
nonuniform grid which has been stretched into the boundary layer. In Morton 
and Scotney [ 19] it was found that the streamline-diffusion and upwinded finite 
element methods, which both aim at giving positive monotone solutions to this 
problem, completely failed to model the boundary layer for this value of e. 
When e = 1 x 10-6 the boundary layer is so thin that it cannot be represented 
on the standard mesh. However, the finite volume method still gives a positive 
monotone solution which is in stark contrast to the oscillatory behavior of the 
aforementioned finite element solutions. 

The combination of accuracy and monotonicity of the cell-vertex method 
for both problems makes this method extremely attractive and practicable. In 
the following sections we attempt to examine the method in more detail by 
analyzing the one-dimensional version of the scheme. 

4. ANALYSIS FOR A ONE-DIMENSIONAL PROBLEM 

In this section we consider the solution of the following two-point boundary 
value problem: 

d Fdu 1 
Lu(x)_ x d -au=f, xeQ=(0,1), 

(4.1) 

u(O) =0, u() =1, 

where e and a are positive constants with 0 < e < 1. Although this singular 
perturbation problem can be solved exactly, we consider it as the simplest model 
problem for more complicated singular perturbation problems leading to the 
Navier-Stokes equations at high Reynolds numbers. We shall also consider 
generalizations of this problem in which a is replaced by a positive function 
a(x). It turns out that this seemingly innocuous problem is extremely difficult 
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to analyze to sufficient precision to demonstrate all the attractive properties of 
the cell-vertex scheme. 

4.1. The finite volume schemes in 1D. We define a grid, Hh, as a partition of 
the unit interval [0, 1], where 

Hh = {O = XO < X1 < ... < XN-1 < XN = 

which has a variable step size hj = xj - xj-1 and where we set h = maxj hj . 
On this grid we define the usual difference operators 

(4.2) A?Uj = +(Uj?1 - Uj), D+Uj = -+ j and D_Uj1= h j 

The cell-vertex approximation is obtained by integrating (4.1) over the first 
N - 1 control volumes to get 

(4.3) c(Uj - UJ-1) -a(Uj- Uj_i) =Jfdx, j= 1, ...,N- 1, 

where ULJ represents an approximation to u'(xj). If we divide through both 
sides by hj we arrive at the discrete equivalent of (4.1); that is Lh: Xh -* Yh 
is defined by 

(4.4) (LhU)j= h[(Uj - U,) - aj(Uj - Uj,)] = h l fdx (fh)ji 

Here, Xh and Yh are simply RN-1 equipped with suitable norms. Two ap- 
proximations of the gradient are summarized as follows: 

(4.5) UJ = [ajD+ + (l -aj)D]Uj, 1 < j < N- 1, 

where aj = hj+I /(hj + hj+1) corresponds to Method A of Mackenzie [12] and 
aj = hj/(hj + hj+1) corresponds to Method B: note that in Method A we have 
UJ = (Uj+l - Uj-1)/(hj + hj+1). The derivative at x = 0 is given by a second- 
order extrapolation of the gradient from the interior of the domain, that is, 

(4.6) Uo = 2DU1 - Ulf. 

Note that both of the above schemes involve a four- and a two-point approxi- 
mation to the second- and first-derivative terms, respectively, and are identical 
when the grid is uniform. Gushchin and Shchennikov [4] and Lavery [10] have 
considered this scheme on a uniform mesh, both of them in connection with 
nonoscillatory solutions of two-point boundary value problems. 

4.2. Approximation of boundary layers and control of spurious solution modes. 
The most commonly used first- and second-order schemes reduce to a three- 
point difference scheme for the 1 D model problem (4. 1). The cell-vertex scheme, 
however, uses four points centered on an interval. This results in the scheme 
having a spurious solution mode for the homogeneous equation, which has to 
be controlled by the extra boundary condition (4.6) used at the inflow end. So 
we start our consideration of this scheme with the homogeneous problem on a 
uniform mesh. 
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When f = 0 the analytical solution of (4.1) is 

eaxe -1 
(4.7) u(x) = eale- 1- 

which increases monotonically and has a steep boundary layer of thickness 0(c) 
at x = 1. 

On a uniform mesh, Methods A and B are identical with aj = 1/2 for all j. 
The exact solution of the difference equations (4.3) with the boundary condition 
(4.6) can then be written as 

(4.8) -1 + 2(iU2-1) 

where 

81u= ,B + (1 + ,B2)1/2, i2 = f3 - (1 + 32)1/2 

I - 92 ) 2 
and ,B = ah/e is the cell Peclet number. Note that #u1 > 1 and is a second- 
order approximation to efl . However, -1 < u2 < 0, and 1u2 is the expected 
oscillatory solution mode; but this mode decays for increasing j, and an im- 
portant feature of the scheme is that the resulting solution is monotonic. This 
is proved in Theorem 4.1. 

For the standard three-point central difference scheme, 

(Lh U)1 (=U+ - 2Uj + Uj_ 1 ) a (UJ+I -Uj_1) 
h2 ~ a 2h 

the solution of the difference equations is 

(4.9) Uj1= (j 1)' where 3 = 2 

3 ~~~~~~~~~~~2 

is the (1, 1)-Pade approximant of efl which is also second-order accurate. 
However, unless ,B < 2, we have jU3 < 0, and the solution is oscillatory and 
growing. This condition is very restrictive when e is small and therefore, al- 
though the scheme has no spurious modes, the approximation is poor as e -* 0 
for a fixed h. 

For the standard first-order upwind finite difference scheme, 

(Lh U)j =(Uj+ - 2Uj + Uj_1) _ a(Uj -Uj_1) (LhU)1=c 
h2h 

we have 

(4.10) -1 whereu4=1=l+ 

is the (0, 1)-Pade approximant of efl . This scheme has no spurious modes and 
is monotonic; it is however only first-order accurate. 
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FIGURE 6. IJEJIo for the cell-vertex, central difference and 
upwind methods with f = 0 and a/e = 106 

There is a very large literature on three-point schemes, derived from both 
finite difference and finite element viewpoints, which combine these two ap- 
proaches in some way-see, for example, O'Riordan and Stynes [22] and Barrett 
and Morton [1]. However, to compare the cell-vertex scheme with just these two 
standard finite difference schemes is quite illuminating. In Figure 6 the discrete 
sup norm of the error IIE II in solutions (4.8), (4.9), and (4.10) for a = 1 and 
g = 1.0 x 10-6 is plotted against h. It shows that each converges as h -> 0, 
the upwind scheme to first order and both the cell-vertex and central difference 
methods to second order. However, as the mesh Peclet number increases, the 
central difference scheme diverges, owing to the growth of its spurious mode, 
while both the upwind and the cell-vertex schemes tend to the correct solution 
of the reduced problem. As is well known, only a scheme with exponentially 
weighted coefficients can give a uniformly accurate error bound (see Doolan et 
al. [2]), that is, the nodal error is bounded by ChP, where C does not depend 
on h or e. The cell-vertex scheme, like the fully upwinded scheme, has a peak 
error where ah/e = 0(1); but it is consistently better over the whole range 
and converges as h -* 0 with an error little larger than the central difference 
scheme. We conclude that its spurious mode has no deleterious effects on its 
performance for this simple problem. 

4.3. Monotonicity of solutions. We now assume a(x) > amin > 0 and introduce 
v = u', so that (4.1) can be generalized, either to ev' - au' = 0 or to the 
conservative form (ev - au)' = 0. In either case, the homogeneous equation 
has a monotone solution: 

x 
(4.1 1) gu"f = au' X> gv (x) = gv (O) + /a(t)v (t)dt 
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or 

(4.12) cu" = (au)' e~ ev(x) = ev(O) + a(x) J v (t)dt. 

We deduce such properties of the discrete system in a similar way. 
When (4.5) is substituted into (4.3), with a replaced by aj = a(xj-112), the 

full difference equation approximating eu" = au' has the following form for 
j =2, 3, ... , N - I1, 

(4.13) [ajD_Uj+I + (1-aj-a}_i)D_Uj-(1-a}i_)D-Uj- ] 

-ajhjD- Uj = 0. 

This yields the recurrence relation 

(4.14) .6ajD_Uj+ = 
c(1 

- ai_)D_Uj_ 

+ [ajhj - c(1 - aj - aj- 1)]D_Ui 

and the boundary condition (4.6) combines with (4.3) and (4.5) to give the 
starting relation 

(4.15) 26a ID_ U2 = [alh + 2,6a,]D- U1. 

The sign of the expression in square brackets in (4.14) is clearly crucial in 
determining whether the solution is monotone, and we have the following result. 

Theorem 4.1. The approximation given by Method A, to the problem cu" = au' 
with u(O) = 0, u(1) = 1, is monotonically increasing if 

(4.16) aj(hji +hj)(hj+hj+1) >?(hj1 - hj+1), j==2, ... ,N-i. 

That for Method B is monotonically increasing if 

(4.17) aj(hj-l + hj)(hj + hj+i) > ?(hj+l - hj-1), j = 2, ...,N- 1. 

Proof. Since (4.15) implies that D_ U2 has the same sign as D_ U , monotonic- 
ity follows if all the coefficients of (4.14) are positive. Moreover, it is clear that 
aj for Method A equals 1 - aj for Method B, so that (1 - a1 - aj-)IA = 

-(1 - a1 - a1_1) B: calculation of these quantities then gives the quoted con- 
ditions. o 

The result is not sharp, since it is easy to see that both methods give monotone 
(indeed, linear) solutions when aj 0. On a uniform mesh, when the methods 
are identical, we see that solutions are always monotone for all values of a(x) > 
0 and e. It follows that Method B will give a monotone approximation on 
any decreasing mesh and for all values of aj and c, while Method A will 
not in general do so. Gushchin and Shchennikov [4] were attracted to the 
four-point scheme on a uniform mesh precisely because of its monotonicity 
properties. However, they proposed switching the scheme to the standard three- 
point central difference scheme when fi < 1/2, which is then monotone as 
shown earlier. However, there is no need to switch from the four-point scheme 
at this value of ,B, as the above theorem shows. 
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When approximating the conservative form of the equation, the last term in 
(4.13) is replaced by hjD- (aj U1), for which we write 

(4.18) ajUj - aj_1 Uj>1= 2aj +2aj-, (Ui - Uj_l) + Uj + Uj_1 (a, - aj). 

Apart from replacing aj by I 
(aj + aj-1) in (4.14) and(4.15), this also adds an 

extra term lhj(Uj + U1- )D-aj to the equations, and so slightly complicates 
the conditions guaranteeing monotonicity unless a(x) is nondecreasing. 

As a direct consequence of Theorem 4.1 we do, however, have the following 
result for the nonhomogeneous case. 

Theorem 4.2. If Method A or B is used to solve the equation eu" - au' = f and 
either condition (4.16) holds for Method A or condition (4.17) holds for method 
B, then the resulting set of discrete equations is uniquely solvable. 

Proof. If we denote the matrix system of nodal equations by Lh, then all we 
are required to show is that Lh is nonsingular. This is true if and only if the 
only solution to Lh U = 0 is the trivial solution. By setting Uo = UN = 0 we 
know from Theorem 4.1 that U = 0, and the result is proved. o 

Note that the stability of Methods A and B would ensure that L-1 would 
exist for a small enough h and that the equations would then be uniquely 
solvable. Theorem 4.2 therefore complements the yet to be established stability 
results ensuring unique solvability. 

4.4. Order of consistency on a nonuniform mesh. For most practical problems it 
is necessary to use a graded mesh to capture localized flow features like bound- 
ary layers. Therefore, we consider the accuracy of the cell-vertex methods on 
nonuniform meshes. Methods A and B are now different, and we consider 
first their truncation errors. If we define the restriction operator Rh such that 
(Rh u) = u(xj), then the truncation error X- Lh(Rhu) - fh has components 

T j_ = I h [(u' - u>il)] - a[u(xj) - u(xl)] - P fdx 

(4.19) = - {[u5 - u>_-] - [u'(xj) - u'(xj_ 01 

= h (Tj - Ty l), 1 <j<N- 1, 

where 

(4.20) T1 = uj - u'(xj) = [ajD+ + (1 - aj)D-]u(xj) - u'(xj). 

For Method A, 

(4.21) (() hj+l - hj)(h2I + (h+ U( 

24h) l+h2) 
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for j = 1, ... , N - 1, where Xj e (xj-1, xj+1). With the boundary approxi- 
mation (4.6) we have 

(A) hi h2 h h -2h1h2-h2 u"'(x ) 
2 6~~~~~~~~ 

(4.22) 24 
0 

2xo2 (4.22) h3 - 3h 2h2 - 3hjh2 - h3 

where co e (xO, x2). Substitution of Tj(A) into (4.19) gives 

(A)= 

T(-) = hj+ [ I+ - 2hj + hj_ 1) )U"(Xj_, 2 hT1 22h 
'-~ 2h1 [\J 2 

+ 1(2h I + hj+1hj - hjhj-l - 2h?1)u'(x1) 
(4.23) + A (h6+1 (h,+1 + hj+,hj + 2hj) 

+hj_ (I l? + hj1I hj + 1 hj)) U(iv)(J )] 

for 2 < j < N- I, where tj_ IE (Xj-2, xj+1) and 

T(A) = e[ hi,,u (XI)+ h2(h+2h2)u (x 

(4.24) 
h2(h 2 + 2h1h2 + 2h2) 1 
+ 

1 2 ~~~~~U(iv)(i) + 24h, 

with 4 e (xO, x2). If elements of Yh are measured in the maximum norm, 
then in general the truncation error is zeroth-order. If successive mesh lengths 
are in a ratio of 1 + O(h2), then the truncation error is at least first-order, and 
if the ratio is 1 + O(h3), then it is second-order. The apparent inaccuracy of 
method A clearly comes from the central difference approximation of u'(xj), 
which is generally not centered at xj. 

In an attempt to rectify the above situation, Method B linearly interpolates 
the two second-order accurate approximations of the gradient at either side of 
xj . If we again replace the true solution in (4.3) and use Taylor expansions, we 
get 

T(B)~ hjhj+1 (hj+1 -h1) (iv)(,~ 
(4.25) T 6 [u(xj) + ()4 j = 1, N- 1, 

where cj e (xj1I, xj+i); and with the boundary approximation (4.6), 

-(B) h (hi + h2) + (2hI + h2) U(iv)(0)l (4.26) (BT1 [U"'(X + 
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where 4O e (xo, x2). Substitution of T(B) into (4.19) gives 

(B) [(hj+I - hjl )I() 

(4.27) (h+ + hj + h2 + hj+hj + hjh ) U(iV)j] 

for 2 < j < N- 1, and 

(B 2h2+hi (h2 +2hih2+ 2h2)(v),2 (4.28) T = [ 6 u "(x ) + 24 

where X e (xO, x2) . Therefore, Method B has a truncation error which is at 
least first-order in the maximum norm. If the ratio of successive cell lengths are 
in a ratio of 1 + O(h), then the truncation error (4.27) is second-order. Clearly, 
this discretization should be more robust than Method A to distortions of the 
mesh. In ?5 we give some numerical experiments which show that this is the 
case. 

However, it should be noted that the order of convergence of methods on 
nonuniform grids can be underestimated by a straightforward estimation of the 
local truncation error. It is possible to obtain different orders of consistency by 
renorming Yh and measuring the truncation error accordingly. For example, 
we may choose the following norm to measure elements in Yh: 

I 
(4.29) IIVIIy, = max 1hkVk 

k=1 

If we measure r in this norm and use (4.19), we have 

Zhk Tk -TklI (4.30) I1TIIyh = max I hk = max_ l (Tj -TO) h I<j?N-1I hk 1<j?N1 

Therefore, in this norm we find that Methods A and B are first- and second- 
order consistent, respectively. The norm (4.29) is called a Spijker norm and has 
been used by Spijker in his work on initial value problems [24]. Through the 
use of this norm it appears that Methods A and B could be more accurate than 
would be naively expected. 

Manteuffel and White [13] have analyzed some well-known finite difference 
approximations to linear two-point boundary value problems and have shown 
that many common schemes are second-order accurate although they possess 
first-order truncation errors on nonuniform grids. This enhancement of trunca- 
tion error has been called supra-convergence by Kreiss et al. [9]. Manteuffel and 
White rewrite second-order boundary value problems as a system of two first- 
order equations, each of which are approximated by many methods to second- 
order consistency in the maximum norm on nonuniform meshes. By a careful 
elimination of variables they then examine the structure of the local truncation 
error of the original second-order problem, which is split into a number of parts. 
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Although not explicitly stated in their paper, the authors similarly renorm Yh 
and remeasure the truncation error and show that the order of convergence in 
the maximum norm for many common schemes is an order greater than the 
order of consistency. 

Implicit in the above discussion on accuracy is that the methods are stable 
in a way that is defined in the next subsection. 

4.5. Stability and uniform boundedness. Convergence of consistent difference 
schemes is usually achieved through the idea of stability. Given the discrete 
problem 

(4.31) LhU= fh, 

where U and fh belong to the finite-dimensional vector spaces Xh and Yh 
which have been endowed with norms x and y , then we have the fol- 
lowing definition. 

Definition 4.1. The discretization (4.31) is said to be stable if positive constants 
ho and C exist such that for each h < ho, V e Xh 

(4.32) || VlIXh < C ILhV IIyh 

From the above definition it is easy to establish the following theorem. 

Theorem 4.3. Iffor given choices of norms in Xh, Yh the discretization (4.31) 
is consistent and stable, then (4.31) possesses, for h small enough, a unique 
solution U. Furthermore, these solutions converge and if we set E = RhU - U 
and r = Lh (Rh u) - fh, then for h small enough 

(4.33) IJEIlxh ? CI ITrIyh 

so that if the scheme is consistent of order p, then it is convergent of order p. 

We may ask if consistency is necessary for convergence and for a certain class 
of difference schemes this is true. 

Definition 4.2. The discretization (4.31) is said to be uniformly bounded if pos- 
itive constants ho and M exist such that for each h < ho, V e Xh 

(4.34) IILhVIIy,h < M1 VIIxh 

We then have the following theorem. 

Theorem 4.4. Iffor given choices of norms in Xh, Yh the discretization (4.31) 
is convergent of order p and uniformly bounded, then it is consistent of order p . 
For h sufficiently small, the truncation error, T, and the error, E, are related 
by 

(4.35) ITIIYy < M IIEIlxh . 

A desirable property of a scheme is that it be stable and uniformly bounded. 
For such schemes we can deduce the following theorem. 
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Theorem 4.5. Iffor given choices of norms in Xh, Yh the discretization (4.31) is 
stable and uniformly bounded, then it is convergent if and only if it is consistent. 
For h small enough, 

(4.36) M1 lITrIIYh < IIElIxh _ C IIIj yL 
This is a convenient result in that if norms can be chosen such that a method 

is uniformly bounded and stable, then the optimal order of convergence in 
the chosen norm is the same as the order of consistency. Schemes which are 
both stable and uniformly bounded have been called bistable by Stummel [25]. 
Unfortunately, it is often difficult to prove that a method is bistable in a standard 
norm, which has led to the notion of supra-convergence. If we consider IILh IKI 
for the cell-vertex Methods A and B, we find that it is proportional to h-2, 
and that it is not uniformly bounded in the maximum norm. Therefore, we 
are unsure if the method is in fact convergent to a higher order of accuracy 
than the order of consistency in the maximum norm. In ?5 we present some 
numerical examples which indicate that both Methods A and B are indeed supra- 
convergent. 

4.6. Maximum principles and error bounds. In this subsection we attempt to 
prove stability in the maximum norm by showing that the difference operators 
generated by Methods A and B both satisfy a maximum principle in mimicry of 
the maximum principle satisfied by the differential operator. In order to derive a 
maximum principle and thence an error bound, in the discrete sup norm 
for the inhomogeneous problem 

(4.37) gu" - au' = f with u(O) = O, u(l) = 1, 

we need to place a lower bound on the mesh Peclet number. 

Theorem 4.6. Suppose the problem (4.37) is approximated by (4.4) and (4.5) 
and the boundary approximation (4.6) is applied. Then a maximum principle 
holds if the conditions 

(4.38) aj(hj+l + hj) > e 

for Method A and both 

(4.39) c(hj+lihjl + hJ + hjhj-1) + ajhj+i(hj+l + hj)(hj + hj-1) > eh? I 

and 

(4.40) aj(hj+I + hj)hj_1 > g[hj+I + hj - hj-] 

for Method B, are satisfied for j = 2, 3, .. , N - 1 . Hence, one obtains the 
error bound 

(4.41) IIRhu - Ulloo <? - ITI< 
amin 

where the truncation error T is defined as in (4.19). 
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Proof The maximum principle takes the form 

(4.42) (Lh W)1 > 0 Vj => max Wj < max(Wo, WN) 

and follows readily if the coefficient of U- 1 in (4.4) is nonnegative; this is be- 
cause the coefficients of Uj-2 and Uj+j are positive and that of Uj is negative 
for Method A and if (4.39) holds it is also negative for Method B, and the sum 
of the coefficients equals zero. This coefficient equals 

aj_ [1-i- ___ + aj__ 

hj L[ h2 hjh>iJ 

and the conditions (4.38) and (4.40) result from substituting for aj and aj>, . 
One merely has to check in addition that U1 cannot be a maximum, by using 
the inequality 2ea ID_U2 > (ah I + 26a I)D_Ui corresponding to (4.15). 

By definition, Lh (Rh u - U) = r, and the error bound is obtained by a stan- 
dard argument through construction of a nonnegative mesh function W such 
that LhJWV > 1 . We take for this purpose (1 - x)/amin to get (4.41). o 

Note that on a uniform mesh both methods require the mesh Peclet number 
to be at least a half: and on a decreasing mesh, the condition for Method B is 
less stringent. 

Again, the situation with the conservative form of the problem is more com- 
plicated: if a(.) is nondecreasing, the theorem holds with aj _ a(xj11/2) re- 
placed by a(xj-i); but if a'(.) < 0, even the differential equation fails to have 
a maximum principle. 

We end this subsection by noting the effect of using alternative boundary 
conditions to (4.6). The obvious first-order approximation is U0 = D_ U1, 
which leads to (4.15) being replaced by ecaID_ U2 = (a1hI + ca I)D_ U1: that is, 
it has the effect of halving e in this equation but leaves Theorems 4.1 and 4.6 
unchanged. On the other hand, if the boundary condition is replaced by U0 = 0, 
(4.15) is replaced by ea1D-U2 = [alh - (1 - aj)e]D_Uj and a lower bound 
on the mesh Peclet number is required in Theorem 4.1 as well as a possible 
strengthening of the conditions in Theorem 4.6. Finally, the introduction of a 
"ghost" cell with U-1 = U1 at a point x = -hl, followed by application of 
(4.5) clearly leads back to the condition U = 0. 

4.7. The reduced problem. Although Theorem 4.6 does not allow us to establish 
convergence, for a fixed c, it does however allow us to consider the behavior of 
the cell-vertex schemes for small values of e. As is well known, the solution of 
(4.1) converges as e -+ 0, for 0 < x < 1, to the solution v(x) of the reduced 
problem 

(4.43) av'(x) = f(x), v(O) = uo. 

What is also well known is that many schemes which are accurate for large values 
of e do not behave well as e -+ 0, e.g., central differences. We now consider 
the cell-vertex schemes using a fixed mesh, rlh, and examine the solutions of 
(4.37) as e -+ 0. We find that we first need to bound the truncation errors of 
Methods A and B, independently of c, which requires some knowledge of the 
gradients of the solution. This we do using the following lemma. 
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Lemma 4.1. The solution u of (4.37) with constant a satisfies 

(4.44) Iu(') < c{ 1 +6e-iexp(-ac-1 (1 - x))}, i = 0, 1, 

where c does not depend on e. 

Proof. See Kellogg and Tsan [8]. o 

We are now in a position to state the following theorem. 

Theorem 4.7. Suppose (4.37) with constant a is approximated on a given mesh 
nh as described in Theorem 4.6. Then for either Method A or B there exist 
positive constants c1 and C2, depending on a and nh but not on c, such that 
for all e < c1 

(4.45) IIRhu - UllK < c2c. 

Proof. If we take 

cl< min a(hj1+ + hj) 

for Method A, and 

cl < min a(hj+1 + hj)hj1/(hj+1 + hj - hj-,) 
I 

for Method B, then the conditions of Theorem 4.6 are satisfied, and we have 
the error bound 

HRhu-UIK?~~~max !j-77I- 
(4.46) IlRhU-Ulloo< max h 

where 

Tj = u' - u'(xj) = [ajD+ + (1 - aj)Dj]u(xj) - u'(xj). 

From Lemma 4.1 we know that I u(x)I < c and that the gradient 

Iu'(x)I ' c{1 + e-1 exp(-a- 1 (I - x))} 
< c{ 1 + e-1 exp(-as-1hmin)} < C2, 

where c2 is independent of e . This shows that the truncation error is bounded 
independently of c, and the result is proved. o 

4.8. Error bounds from an energy analysis. Even on a uniform mesh the analysis 
given above does not establish convergence for a fixed c, although the error 
bound (4.41) based on the conventional truncation error (4.19) is then quite 
good for mesh Pclet numbers greater than a half. Generally, though, one 
needs an alternative analysis, especially for Method A, in order to obtain an 
error bound that depends only on the error (4.20) with which the gradient is 
approximated: this we will now undertake for constant a. 

We introduce a notation for the errors in the solution and its gradient at each 
of the nodes, 

(4.47) Ej =- rUj - u(xj) Fj =- Uj' - 
u](xj) i-n=05.. N. 
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The finite volume scheme to approximate (4.37) for a constant a, with Lh 
given by (4.4), is 

(Lh U)i = 4-f fdx = h{e[u (xj) -u '(xj_ )] -a[u(xj) -u(xj_ )]}; 

and by using (4.47), we can write this as 

(4.48) c(Fj-F_1) =a(Ej-EEj1), j=1,..., N-1. 

Since UN is so far undefined, we can use the same relation (4.48) for j = N 
to give 

(4.49) FN = FN-1 + - (EN - EN-1). 

Noting that EN = Eo = 0, we multiply (4.48) and (4.49) by (Ej + Ej-1) and 
sum over j = 1, ...,N to get 

N 

(4.50) Z(Fj - F-1 )(Ej + Ej-1) = 0, 

independent of e and a. Application of a standard summation-by-parts iden- 
tity yields 

N 

(4.51) Z(Ej - Ej1)(Fj + F1_l) = 0, 

which can also be written as 

(4.52) Fo (El - Eo) + F1 (E2 - Eo) + +FN- 1 (EN - EN-2) 

+ FN(EN - EN-1) =0- 

This is the desired basic identity. 
If f(x) is integrated exactly, as we have assumed, the truncation error results 

solely from the substitution (4.5) for the gradient, as shown by (4.19) and (4.20), 
and is therefore proportional to e. It is now clear that we can write 

(4.53) Tj = Fj-[ajD+ + (1-aj)DJ]Ej, j = 1, ..., N-1. 

An error bound for Method A then results from substituting into (4.52) the 
expression for Fj given by (4.53). The appropriate inner product and norm for 
this purpose is given by 

(4.54) (U, V)h 
= 

2 + h1 UI VI + + hN-1 UN_1 VN_1 + 2hNUNVN, 

where h. - I (hj+1 + hj) and 11UII2 = (U, U)h . We also introduce the vector 
of divided differences, suggested by (4.52), 

(4.55) DE_ {D+EO, E2 - E0 EN. - 
ENN2 D_EN 

in terms of which we obtain the following lemma. 
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Lemma 4.2. There are constants Cj, independent of the mesh, such that 

(4.56) IEul < Cj JIDEIIh, j = 1, ...,N-1. 

Proof. Suppose first that j is even. Then 

1Ej12 =KE2-EO) + + (Ej-Ej-2)12 

< [(E2-Eo) + + (E1-E_2)2] [(hi + h2) + + (hj-l +hj)] 

< 2xj }IDE112. 

When j is odd, the same bound is obtained from starting the expansion with 
(El - Eo). Similarly, we can obtain bounds by starting from the right-hand end. 
Thus (4.56) follows with 

(4.57) Cj = [2 min{xj, 1 - x}P]. o 

We are now in a position to give an error bound. 

Theorem 4.8. Consider the problem and cell-vertex scheme of Theorem 4.2 but 
with constant a. If the mesh is such that 

(4.58) ahNe > 

then there is a constant y such that, for Method A and the boundary condition 
(4.6), 

(4.59) E <-IITIIh , 1= 1, ..., N-1, 

where we set TN = TN-1 and define 

(4.60) To = 2D+u(0) - U(X2h ( u'(0). 

Proof. If (4.52) is scaled by one half, the first two terms can be rearranged as 
follows, by means of (4.6), (4.53), and (4.60): 

2[Fo(El - Eo) + Fi (E2 - Eo)] 

1 (El-Eo)[2D+ U0-Ul - u'(0)1] +!(E2E [ E2-EO + Tl 
= ~(Ei 01t +oluk)J 2k2 O 2h, 

= 2hlD+Eo [2D+Eo - + To] +hi ( 22h 0) [E22EO + Ti] 

> Yo [2hi(D+EO)2 +hl (E2 h E)2] + -hi(D+Eo) To + hi (E22E) T1, 

where 

yo = max [min (2- c X 1 - 4hc2)] 

Yo attains its minimum value 1(3 - V2) 0.7929 as h2/hl -+ 0. 
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At the other end of the sum we use (4.49) to obtain 

I[FN-1(EN- EN-2) + FN(EN- EN-1) 

- 2FN-1(2EN- EN-1 -EN-2) + 2 (EN- EN_1)2 

>~ [~i (EN- EN-2)2+ih > Y1 [AN-1 ( ^ )+ 2hN(D_EN)2 

[ ( ~2hN-1 ) 2] + [hNl - N N )+ hN (D-EN)] TN-1, 

where 

(4.61) yi = max [min (I -4hNC2 -2c2)] 

Clearly, 

YI >0 if 4hN-1 
> e hN 2ahN' 

that is, (4.58) is satisfied. We can then take y = min(yo, Yl) to obtain, by 
substituting (4.53) into (4.52), 

(4.62) 0 > y IIDEII1 + (DE, T)h. 

Hence, IIDEIIh < IITII /y, and (4.59) follows from Lemma 4.1. o 

The proof of the theorem clearly depends heavily on the fact that the centered 
differences of E occurring in the identity (4.52) are also used in Method A. This 
does not happen in Method B, and the inner product of E-differences is not 
positive definite in that case, even for only mildly nonuniform meshes. This 
is a familiar situation in numerical analysis: the second-order accurate method 
does not have the stability properties of the first-order method. For this reason, 
and because condition (4.58) still prevents the proof of convergence, we finally 
resort to estimating Green's functions. 

4.9. A discrete Green's function estimate. The key property of the cell-vertex 
approximation is the constancy of the total flux error expressed in equation 
(4.48). Good approximation of the gradient at the inflow boundary should 
therefore be reflected in a good error bound throughout the domain. We denote 
this constant by K; and we introduce vectors E = {Ej : j = 0, 1, . .. , N - 1 }, 
F = {F j: j = 0, 1, ... , N - 1} for the function and gradient errors (4.47), a 
notation that we shall extend to U and T. Then (4.48) becomes 

(4.63) cF - aE = K1. 

Also, the relationship (4.5), approximating the gradient by a divided difference, 
and the boundary condition (4.6) at the inlet end are written 

(4.64) RD+U = SU'. 
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For Method B and boundary condition (4.6), these matrices are scaled so that 

(4.65) 

hi 1 2h, 1 2h 1 hi h2 hhh h2 

_ ~~~hN- I hN hN- I hN_ 

For Method A and alternative boundary conditions, R and S have similar 
forms, with each entry O(h-1). 

Introducing the truncation error in the gradient approximation given by 
(4.53), we can combine (4.63) and (4.64) to give 

(4.66) 8RD+E = S(aE + K1 - 8T). 

In principle, this may then be solved for E and K by means of the boundary 
conditions EO = EN = 0. As a first step, note that the consistency of either 
method ensures that (4.64) implies Rl = Si; and it is easily seen that R is 
invertible. Hence, R-1S1 = 1, and we introduce the modified truncation error 
defined by 

(4.67) T 1_ RST. 

This step inverts the linear interpolation operator which calculates the nodal 
gradients from the first divided differences and modifies (4.56) to 

(4.68) -gD+E + aR-1 SE = 8T - K1, 

with EO = EN = 0- 
Suppose now we introduce a discrete Green's function 

{ Hij : i = 1,5 2, ...,5 N - 1,5 j = 1,5 2,5 ...,5 N}, 

by means of which we can write the solution of (4.68) as 

N 

(4.69) Ei = hjHijTi i=1, 2, ..., N- 1. 
j=1 

Then our main task is to estimate {Hij}, in some appropriate norm. It may 
be worth noting first what this corresponds to for the differential equation. By 
integrating the original second-order problem from 0 to x, we have 

x 

(4.70) [-cu' + au]x = eg(x)=- j f(t) dt, 
0~~~~~ 

so that we seek an H(x, t) such that 

(4.71) u(x) = j H(x, t)g(t) dt. 
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FIGURE 7. Green's function H(x, t) with x = 0.6, a = 1, 
and e = 0.1 

It is simple to show that H(x, t) is determined by the properties: 

(4.72) (i) JH(x, t)dt -= 0; 

(4.73) (ii) cdH(x, t) + aH(x, t) = 0 except at t = x 

(4.74) (iii) H(x, x+) - H(x, x_) = 1. 

Figure 7 shows a sketch of H(x, t), for typical values of a and e. 
Substituting T given by (4.67) into (4.68) gives an identity which yields the 

following defining relations for {Hij }: 

N 

(4.75) EhjH1j = 0, i = I, 2, ... . N - 1 
j=1 

N 

(4.76) Hi1 - H aij1 + - E hkHik(R-1S)k_1,j-1 = 3ij-1* 

k=1 

In particular, it is easily checked that for the purely diffusive case, where a = 0, 
we have 

(4.77) Hij 
-( -xi 

for j 
> i +1 Xi ~for j1> i +1, 

which corresponds to the exact H(x, t) given by (4.72)-(4.74). 
Before embarking on the estimation of Hij when a $& 0, we will first obtain 

bounds for Tj. For Method B, which is our main concern in this this section, 
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R and S are given by (4.65), and it is readily seen that 

(4.78) 

Tn 

= 

hjo+ 

[ 

I 
l 

k 

hkh 
Tk 

+ 2h )(TO + 
TI)] 

We now suppose that u E C4(0, 1) so that from (4.25) 

(4 79) T1 6T1 [u (xj) + 4 (hj+, - hj) u('v)(4j) 

j = 1,2, , N-1 , 

where Xj E (xj-1, xj+i); and with boundary condition (4.6), we have from 
(4.26) 

To= - hi(hi6 [u (xo)+ I(2h, + h2)u(iv) (o)JO 

where 'o E (xO, x2). Hence, rearranging the sum in (4.78) gives, when j is 
even, 

(4.80) 

.11 hj~+I h+ ''x)h "(l)-4(2-h u')(l)+(?h')] 
Tj = h6 [(-l)jk {hk(U"'(Xk) - U"'(Xk+ 1)) + 4(hk+ -h 2)U(iv)(4k)} 

+ hj+ IUlf/(xj) - h 1u"' (xi) - (h2 - h2)u(v)(oi +(T ) 

and when i is odd, 

(4.81) 

T= h-6 ?l k{k(U"'(Xk) - U"'(Xk+l)) + 4jhk+1 -h h,)(iv(k)} 

+hj+lu"'(xj) - (h2u"'(x2) - (hi + h2)u"'(xi) 

+ 4((h2- h2)U(iv)(42) - (h2- h2)u(iv)(g,))) 

+ (To + T1) 
2h, 

In both cases, since u E C4(0, 1), 

(4.82) u"'(Xk) - U"'(Xkl) = hkU(iv)(ik) 

for some 1k E (Xk1l, Xk), and therefore Tj = 0(h2) on any mesh. 
Calculation of the discrete Green's function {Hij} starts from the right 

with an arbitrary value of HiN. Substitution for (R- S) into (4.76) gives 
for Method B the successive relations 

HiN -HN-1N +- lhNh hNHiN = o, 
hNhN-1 
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HiN-I -HiN-2 + a hN + hN2 (h-lHiN-1 -h2 HiN) = 0, 

and generally, 

(4.83) 

Hij - Hij-+- h h (hj?Hj- h j+1 +... + (_)N-jh2HiN) = i-,. -H11 + -j j j 

Then HiN is determined from application of (4.75). The whole procedure is 
most easily analyzed on a nonincreasing mesh, where we have the following 
result. 

Theorem 4.9. Suppose u E C4(0, 1) is the solution of the problem (4.37) with 
constant a, and it is approximated by the cell-vertex scheme as in Theorem 4.2. 
If Method B is used and the mesh is nonincreasing, hj+1 < hj, then the nodal 
error satisfies 

(4.84) IUi - u(xi)l < 21ITII,0 

with Tj given by (4.80), when j is even, and by (4.81) when j is odd. 
Proof. We can suppose that HiN > 0. Then we deduce that 

(4.85) 0 < HiN <HiN1 < ...<Hii+l 

by induction: for, using the induction hypothesis and hj+1 < hj, we obtain 

Hij -I > Hij - a hj + hj-l [h 2(Hj -Hij+,)+h? 2(Hij+2-Hij+3)+ c h1hj. I J1H11 +h2( 

> Hij. 

The 3ij-1 in (4.83) initiates a further monotone sequence at Hii, but the 
combined sequence is no longer monotone and may oscillate. However, we 
are able to bound its behavior by use of a recurrence obtained by combining 
(hjhj>1)/(hj + hj-1) times (4.83) with its successor to give 

(Hij+1 -Hij)+ + ij Hij_j)+ ahjHij= 

i.e., 

hj- IH [ (h1_1 - hj+1)h ah hj+ 
(4.86) hj +hjmlH [(hj+ I+ hj)(hji+hj>l)+c J]H+ hj1 1+ hj 

for j = i - 1, i- 2, ... , 2. 

The coefficients here are all positive: so if Hii < 0 and Hii-1 < 0, then the 
sequence remains nonpositive; and to have both His > 0 and Hii-1 > 0 will 
not yield the negative values required to satisfy (4.75). It is also clear from 
(4.83) that 

H < ? + a hi + hi-, hi H - a hi + hi 
- 

[h2 (Hi - Hl i) + J 

<hc I l h ] H ahi + hi ,1 
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Hence, if Hii < 0, then Hii-I < 0, and all the positive terms in the sum (4.75) 
result from j > i + 1 . It is readily shown that Hii+I < 1 so that this part of the 
sum is bounded by (1 - xi). If, on the other hand, Hii > 0, then it is necessary 
that Hii-I < 0 and the sequence may oscillate before two terms of the same 
sign cause that sign to hold thereafter. Moreover, it is clear from (4.86) that any 
oscillation is damped and confined between Hii-I and Hii; for, if we suppose 
Hij < 0, then 

(4.87) Hij_ I < hJ+ (hJ + hj 1) Hij- < Hij+, . (4.87) H11~~1 
h- 
1 

1(hj+l + hj) " 

If oscillation occurs and then the sequence goes negative, the contribution from 
j < i to the positive terms in the sum (4.75) is bounded by xiHii; but putting 
Hii-I < 0 in (4.83) with j = i readily shows that Hii < 1, so that the sum 
of all positive terms is seen to be less than unity. If the sequence should go 
positive after oscillation, we bound the negative terms by xiHii-l, and by a 
similar argument we find that Hii-I > -1. 

Thus, by bounding either the positive or negative terms, we establish that 
Zjh}IHij < 2, and the desired result follows from (4.69). o 

5. NUMERICAL EXPERIMENTS IN ID 

We conclude by considering some experiments to validate some of the theo- 
retical issues raised in the previous sections. We also compare the performance 
of the cell-vertex methods with other finite volume methods. 

5.1. Example 1. The monotonicity and accuracy of both Methods A and B is 
demonstrated by applying them to the solution of (4.1) with f = 0 where, for 
simplicity, we take a = 1. A nonuniform grid is generated using a smooth 
mesh function 

g(s) = 1-(1 -s)f 

such that 

5 
1 ~~~~x. = g (sj), j = O, ......... N N, 

(5.1) j/N 
( 

* ) 
~~~sj = j/N, j = O, ......... N N, 

where a is a positive integer chosen to cluster the mesh points in the boundary 
layer. Since g(s) E C2(0, 1), this ensures that hj+l - hj = 0(h2). Figure 8 
(see next page) shows the computed solutions using Method A for the three 
cases e = 1 x 10-1, 1 x 10-2 and 1 x 10-3 on meshes with a = 1, 2 and 3, 
respectively, and in all cases N = 64. These results show very good agreement 
with the exact solutions and are strictly monotonic despite (4.16) being violated. 
The results for Method B are identical to those of Method A at plotting accuracy, 
but in fact are more accurate as can be seen from Table 1, where the loo error of 
both schemes for the above three cases are given. For comparison, this problem 
was also solved with two cell-centered finite volume methods (more correctly 
called vertex-centered methods nowadays). The first cell-centered method gives 
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a difference approximation 

(5.2) (LhU)j = h j+h l^ {e (Uhj+l hjU) 
-a (Uj+I + Uj _j U+ Uj_l1} 

which is second-order accurate on uniform meshes. The second cell-centered 
method tested was the first-order upwind method 

(5.3) (LhU)Jh 2h {(U j+ i - U h i )-a(Uj-Um_)} . 

The results for both methods are also shown in Table 1. As expected, the 
first-order accurate method is the least accurate of all the methods, owing to 
numerical diffusion of the first-order approximation of the convective term. 
The accurate results obtained with the second-order cell-centered method are 
somewhat surprising, although in each case there are several mesh points in the 
boundary layer. Moreover, it should be remembered that on a uniform mesh 
the three-point central difference approximation of the second derivative has a 
leading coefficient of the truncation error which is 2/5 that of the four-point 
cell-vertex method. The above results show that on these smoothly varying 
meshes this increase in accuracy is partially maintained even though the con- 
vective terms are less well approximated. 

1.0 Ic = 0.1, a= 1 1.0 I 0.01, a= 2 1.0 X F=Q0.001, a= 3 

0.8- 0.8 0.8- 

0.6 0.6 0.6 

0.4- 0.4' 0.4 

0.2 0.2 0.2 

l---------- I W a a a n one 
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 

FIGURE 8. Solutions for a ID singular perturbation problem: 
o = cell vertex, x = exact 

TABLE 1. Calculated lo errors for 1 D singular perturbation 
problem for the cell-vertex Methods A and B, a second-order 
centered finite volume method and a first-order upwind cell- 
centered method 

[SchemeI c=0.1, a=1 [ =O0.01, a=2 1 =O0.001, a=3 
A 1.48E-3 6.63E-3 1.47E-2 
B 1.48E-3 4.35E-3 1.04E-2 

CC 7.48E-4 2.24E-3 5.41 E-3 
UP 2.70E-2 3.90E-2 5.37E-2 
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5.2. Example 2. In order to investigate the order of convergence of Methods A 
and B on general meshes, they were both applied to the solution of (4.1), with 

a =, c = 0.1 and f e2/e'1 

This particular forcing function was chosen in order that the analytical solution 

e-XI6- 1 
U() = - 1 

has a boundary layer at x = 0 and so that the accuracy of the boundary ap- 
proximation (4.6) could be properly tested. A sequence of 600 random meshes 
(N - 1 points placed in (0,1) at random) were generated with N ranging from 
100 to 600. The grids were generated with the following algorithm: 

fix J > 0 
xo = a 
i = O 
do while xi < b 

I = I +1 

hi = random number in (0, 3) (uniform distribution) 
xi= xi- + hi 

end do 
J = i 
XJ = b 
hi = Xi - Xji- 

For all of the results shown below the meshes were calculated with hmax/hmin 
being bounded by 107 with the aim of generating very distorted meshes. Figure 
9(a) and (b) (see next page) show the error plots for Method A. The scatter dia- 
grams have been fitted by a least squares regression line to give some indication 
of the slope of the graphs. Figure 9(a) shows the maximum error and has a 
slope of 1.47. Therefore, the method appears to be at least first-order accu- 
rate, despite the method being inconsistent in general. Calculation of the local 
truncation error shows that JJTJJl -- O(hmax/hmin) as hmax -- 0. As mentioned 
earlier, for these calculations hmax/hmin < 107 , and so the truncation error was 
very large indeed. Figure 9(b) shows the calculated error in the gradient approx- 
imation, JIFII,oo for Method A, the slope of the graph being 1.44. As predicted 
from the earlier analysis, these results indicate that the order of convergence 
of the method is determined by the accuracy of the calculation of the gradi- 
ent, which for Method A we have shown to be first-order accurate on arbitrary 
meshes. Figure 9(c) and (d) show the error plots for Method B. Figure 9(c) 
shows plots of both the nodal error, which is in the upper portion of the graph, 
and the local truncation error. The calculated slope of both lines is 2.05 for the 
nodal error and 0.83 for the truncation error. Therefore, we experimentally 
observe the supra-convergence property of the method. In addition, Figure 9(d) 
shows the error in the calculated gradient, the line having a slope of 2.0. As 
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FIGURE 9. Error plots of Methods A and B on random meshes: 
(a) and (b) show ~EK I1, andII ~FK I1, respectively for Method A; 
for Method B, (c) shows gEKJ (upper) and I J Io, and finally 
(d) shows gFI1 



FINITE VOLUME SOLUTIONS OF CONVECTION-DIFFUSION TEST PROBLEMS 219 

with Method A, the order of convergence of the gradient approximation is equal 
to that of the nodal solution. 

Finally, a first-order boundary condition U0 = U, was tested on the above 
problem with Method B; the resulting slope of the regression line through the 
scatter diagram had a gradient of 0.47, confirming the need to use a second- 
order boundary approximation in order to retain second-order global accuracy. 

6. CONCLUSIONS 

The final Theorem 4.9 gives us the best and most comprehensive results that 
we have for Method B. By the same techniques it is possible to prove simi- 
lar theorems for more general meshes and also for Method A. For completely 
general meshes one can prove (see [3]) the stability of Methods A and B using 
compactness arguments developed by Grigorieff. In some cases, error bounds 
can be established in terms of the local truncation error T rather than T, as 
was done in [20]. 

However, many of the attractive features of these cell-vertex methods are only 
revealed by the maximum principles and monotonicity results given in ?4.4. We 
also believe that the energy method used in ?4.5 is capable of generalization and 
wider applicability. As was pointed out in the introduction, our purpose in dis- 
playing these various techniques of analysis has been to explore those which will 
be most applicable in 2 or 3 dimensions, where practical interest is focussed and 
where, as we have seen with the IAHR/CEGB model problem, these methods 
give such good results without the need of carefully tuned parameters. 
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